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Abstract—The etfective thermoelastic propertics of composites with coated short fibers are derived
in this work. Under the assumption of thin coating, the stress field of the coated layer remains
uniform across the thickness of the layer but otherwise possessing variation along other directions
and can be found in terms of the stress field of the fiber and the direction cosines through the use
of the interface jump condition between the coating and the fiber. The effective thermoelastic
propertics are then derived based on Mori-Tanaka's scheme and the modified Walpole method.
Numerical comparisons to existing results for long coated fibers are made. [n addition, a parametric
study is also included.

INTRODUCTION

Composite materials have been extensively used in many applications, particularly as a
structural component due to their high specitic stiffnesses and strengths. In most applications
the fibers arc not coated. Recently, there has been a growing demand for coated fibers as
a reinforcement in some new application arcas such as electrical composites, metal matrix
composiles (MMC) and ceramic matrix composites (CMC) intended for high temperature
applications. Improvement in the bonding between the fiber and the matrix, preventing
oxidation of the fiber, and introducing transition propertics are the basic functions of
coaling.

The basic problem in the composites with coated fibers is the calculation of the
thermoclastic stress licld and its properties. Walpole (1978) proposed a simple method to
calculate the stress ficld within a thin coating if the solutions to the stress ficld are known
for a single noncoated liber embedded in an infinite matrix, avoiding actually solving the
elastic field. Mikata and Taya (1985, 1986) applicd Boussinesq -Sadowsky stress functions
to calculate the stress ficld for two confocal prolate spheroids embedded in an infinite body.
Hatta and Taya (1987) calculated the thermal stress ficld within the coating for a coated
fiber composite by modifying the Walpole method together with the Eshelby equivalent
inclusion method. The above mentioned works limited themselves to the stress ficld but not
the thermoclastic propertics.

Benveniste ef al. (1989), derived the thermoclastic stress field and effective properties
for the composites with long continuous fibers. Chen er al. (1990), extended the above work
to cylindrical orthotropic fiber composites. Pagano and Tandon (1988, 1990) gave their
predictions to the thermoclastic properties for multidirectional coated fiber composites, in
which the fibers were continuous. All of these works hold for both thin and thick coating
but limit themscelves to composites with long continuous fibers, partially duc to the difficulty
in solving the stress ficld of short coated fiber composites.

Thus, since there are no existing works showing the thermoelastic properties for short
coated fiber composites, it is intended in this work to derive the tensorial expressions for
the prediction of their effective thermoclastic properties. It will be assumed that the coated
layer is thin and hence the stress ficld within the coating is reasonably assumed to be uniform
through the thickness but otherwise may vary along other directions. Hence, Hatta and
Taya’s work (1987) is followed in this work to calculate the thermoelastic properties.
Numerical comparisons with other existing works have been made and the results are
satisfied. Parametric studies are also conducted and the results are presented below.
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EFFECTIVE ELASTIC MODULI

Consider an infinite elastic body (without inclusions. i.e. the matrix only) subjected to
a uniform stress field ¢,. The uniform strain &, is

g =C" "0, (h

in which C° is the elastic modulus tensor of the matrix (which is assumed to be isotropic).
It is noted that in this work the bold face capital English letters and small Greek letters
denote the fourth order and the second order tensors respectively. When there are ellipsoidal
inclusions (coated fibers) present in the matrix, a perturbed stress field is induced and is
denoted as &(x). The total stress field o(x) is now the sum of two stress fields: a,+ ().
Define the volumetric average of the perturbed stress and strain fields of the matrix, ¢ and
£ according to

6 ={6(x))p_q =

l J‘
g(x)dVv
VD~ﬂ D -
=C"z 2)
in which
D.Q, D-Q: domain of the whole elastic body (composite), all the coated fibers and
the matrix respectively,
Vip_q: volume of the matrix,
{ Yo a: volumetric average for the domain D--Q.
Thus the average stress ficld in the matrix is

Oyp = 0'()+& = Co ‘ (E()‘}‘E) (3)

Denote C' and C° as clastic modulus tensors of the fiber and the coating. Then by use of
Eshelby’s equivalent inclusion method (Eshelby, 1957 ; Mori and Tanaka, 1973), one has:

in the domain of a typical fiber, Q;,

6f=Cf,8f= Cr'(80+é+£”+812)
=Cm'(80+§+8“+8'2—8*l) (4)

and, in the domain of the coating of a typical fiber, Q,—-Q,,

o =Cg = Cc'(80+é+82:+82l)
=C™(eg+e+e’ +e’ —e*?) (5)

in which *' and g** are “eigenstrains” (Mura, 1982) defined in Q, and Q,—Q,, respectively,
and g” is the disturbance of the strain field in the ith domain due to the existence of the jth
phase with i(or j) = 1 (fiber) and 2 (coating). From Eshelby (1957), we know

e'!l =S-g*!, (6)

where S is Eshelby’s Tensor (Eshelby, 1957; Mura, 1982).

In the present model, the disturbance of the strain field in Q, due to the coating is
averaged over the fiber domain Q,. The average of the disturbed strain field is denoted as
g'?. Thus we have g'* = (&'*(x)),. Then according to Hatta and Taya (1987), under the
assumption of a thin coating layer, one has
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e”=§§<S°-s“>:=fn<5°-a" : )

in which f; and f, denote the volume fraction of fiber and coating, respectively, and { ),
and ¢ ), denote the averaged quantity over 2, and Q,—Q,, respectively, and further, the
fourth rank tensor S, is related to the Eshelby tensor S and the surface directional cosine
n, of a fiber surface outward unit normal n as:

Sl(()lmn = Sklmn - C::[mnnlln' K’:‘I"— ' (8)
in which
K] = CRumen,. C))

Under the assumption of thin coating and hence the constant variation of stresses and
strains through the thickness of the coating, the volume average of a stress or strain function,
being a function of surface direction, i.e. F(n), over the domain of coating, Q;—Q,, can be
calculated in a simple way. The details are provided in Appendix A.

Now since the total volumetric average of the stress field of the whole composite must
be equal to a,, it follows that

dq =ﬁ)6m+fl"r+f2<"'c>2 (10

in which f; is the volume fraction of the matrix. Substituting (3), (4) and (5) into (10) gives

i+ fi(e" +e' —e*" )+ 18 +e? i =2*?), = 0. (1

In addition, the total volumetric average of the strain ficld of the whole composite, e, can
be expressed as

e’ = foleo+8) + fi(eo+E+e' +e'7) + frdeg +E+e’! +e77),
=eo+i+fi(e' +e) + (e’ +27),
=g, + fie*' + [2(e*?): (12)
in which the last equality is obtained through the use of (11).

Let us focus on the interface between a short fiber and a thin coating. Then the
continuity of traction and displacement vectors requires at this interface that (Hill, 1961 ;
Walpole, 1967)

uv—u'=0 and (6°-a)'n=0. (13, 14)
Again n is a unit vector outward normal to the fiber surface. The displacement gradient
tensor u,; is discontinuous across the interface and the jump of u;; across the interface can
be expressed as
3 ¢
ui,—u,, =An,
which in turn can be rewritten as

£ —e = }(An+ni). (15)

Substituting (4), (5) and (15) into (14) yields
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o— ke oyt e ! okl
b =Ky (Clu—Cluewun, — K5, Clyein, (16)
tn which
K = Chnmeny. (16a)

Substituting (15) and (16) into (5) gives

of = Chuleli+ K, (CRu = Clp)ehn,m—Ki, ' C2, 6% nyn, . (17
Let
ke = HKS 'n,n,-f-l\’,‘) 'n,nk + Kk ‘rz,n,—{»« K 'n,nk). (172)
Thus
6 =D"g —D? g (18)
in which
D'=CH+CP(C"=-C) D =C PO, {18a)

From (5) and (18), we can get

= (CF = gt
SETGIR LI BY ) LRPUNST o oL BN ) Lo

= (C* ! e ‘) D' (8“ +E+l:” +nl.‘) -(C* ! - ') S gt (19)
Substituting the above equation into (7) leads to

et = f1:¢8" 'ﬁ“):

1

= f12(S"(CF = C" ) DDz i ')

— [i48Y(C = C™ Y Dy, e (20}

The above equation can be rearranged to yield

12

£ =R (g, +E+e'") ~ R, g*! @2n
in which
R, =(-DY "D R,=(-D") '-D*
D' = £1:¢8°(C* '=C™ )D'>S, D*=/,(S8"-(C* '=C™ H-DY, (2la)
and | is the fourth rank identity tensor defined as

f

pyrs

= (3,9, +8,73,). (21b)

It is noted that in Appendix B a sample calculation of the averaged quantitics such as
¢S°-(C°'—=C™ ")+D'y, is provided in detail. Similar quantities such as (8"+(C*"'—
C™ 'y- D). and others flike R, and Ry in (23a)] below, can be caleulated in the same way.
From (5) we know
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el el —g* = C™ ot 2
Substituting (18), (21) and (22} into (11) yields
F - 84+F. " +F;,gg+F,e*' =0 (23)
in which
Fy={1-fI+fiR+ R+ fR'R, F,=fi(I+R)+ iR+ iR, R,
Fi=fiR+ R+ /R R~ fil Fy=—fill+R)—f-R,~ f.R,*R;
R.=<C™ '“D'), R,=(C" '-D>.. (23a)
Thus. eqn (23) can be rearranged to yield
g=—F; ' "[F.oe"' +F, gy +F,-2*']. (24
Substituting (24) into (21) yields

812 = R; '{8(;‘{"8” ’—F-{l'(F:'ﬁn+F3'80+F4'8*')}“‘R2'8'l
=lll'ﬂ‘;+ll:'gll+"§'8*l (25)

in which
H) =R, =R ‘F/""F, H,=R R F/ "F, H;=-R,~-R,-F;'-F,. (252)
From (4), we find
= AT (g +E+2') (26)
in which

1

C") T=({+S-C" '-C'-8) ", (261)

A=(-C"
Substituting (6) into (24) and (25) yiclds

g = —F‘ t'(FE'S'E*’+F3'80+F4'8*;)
—F ' (FyS+F) et —F ' -F, g, @7

i

and

N

£t =H gy+(Hy S+ H,) - g*'. (28)
Substituting (27) and (28) into (26) yiclds

e = AT [eg—F, ' (Fy S+F) e —F ' Fyogy+H, rgy+(H,-S+H,) 6]
=E, g, +E, 2 (29)

in which
E,=AT-[I-F'"F,+H|] E:=AT-[H,*S+H;,-F ' (F,-S+F))]. (29a)

Rearranging (29) gives
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e*'=(1-Ey) ""E,-e,=E;-g, (30)
in which
E,=(-E,)"'-E,. (30a)
Substituting (30) into (27) and (28) yields

£E= —'Frl'(Fz'S+F4)'E3'ao—F|_l'FJ'}IO
=Eq-¢g (€2}

and

ey =H e+ (H,"S+H;) E, ¢
=E5'80 (32)

in which
E,= —F;' (F;*S+F)-E,~F['‘F, E;=H,+(H,-S+H,)-E,. (32a)
Substituting (6), (19), (30), (31) and (32) into (12) yields
8" = [I+fiE;+ fiR,-(I+E,+Es+S-E,) - /,R, - E;] ‘¢, (33)
in which
R*=((C°'-C™ '):D'), R*=((C*'-C" ')-D?,. (33a)
Now define the effective clastic moduli C* of the composite according to
g, =C*-¢". (34)
Then, combining (1) and (33) with (34), the effective elastic moduli C* are given as

C*=C" I+ fiE;+ /iR (1+E,+Es+S-E;)— iR, - E,;] . (35)

EFFECTIVE COEFFICIENTS OF THERMAL EXPANSION

As a parallel to the above derivation, to evaluate the effective CTE (coefficients of
thermal expansion) of the composites with coated fibers, let us first subject the matrix alone
to a uniform temperature field AT. The uniform thermal strains g, produced due to such a
temperature field are

gy = A Tam (36)

in which a,, is the second order tensor of the coefficients of thermal expansion of the matrix.
It is noted that due to free expansion and no applied external foads, there are no stresses
in the matrix, i.e. ¢, = 0. When there are ellipsoidal coated fibers present in the matrix, a
perturbed stress field a(x) is induced and the volumetric average of the perturbed stress
field of the matrix, &, is again given by eqn (2). From Eshelby’s equivalence inclusion
principle, one now has,
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in the domain of a typical fiber, Q,:

0'f= Cr'(é+s”+s':—-s”)

=Cm_(é+gll+812__8ttl) (37)
and in the domain of the coating of a typical fiber, Q.—Q,:

o°=C"(E+e +g' —2T
=C"-(+e’ +&2! —g**?) (38)
in which

e = (a;—2,)AT &7 = (a. —an)AT 39)
and a and &, are the tensors of the coefficients of thermal expansion of the fiber and the
coating. It is noted that the relationships for ¢'' and &'?, eqns (6)-(9), are again valid.
Further, the traction continuity and jump condition of displacement gradient given by eqns

(14) and (15), hold here. For easy reference, they are repeated as follows:
(6°—aN'n=0 (14)

e ~8 = (eo+i+8’+e)—(gg+5+8'" +2'%) = {(An+nd) (15

in which & and &' arc total strains of coating and fiber. Now substituting (37), (38) and
(15) into (14) yiclds

i, = K, ' [(Chu— Cf,k/)(gu'f'gklll +5k|/2)”/ - Clhuet’ I”, + Cf[klcl}lz"j] (40)
in which K, is defined as eqn (16a). Substituting (15) and (40) into (38) gives
o = D'+ @+ +2') =D rg** D" @n
in which D' and D? are given by eqn (18a) and
D5=Cc.pc.cc_cc (4|a)
with P* defined by (17a).
The total stress average over the whole domain is again given by eqn (11), and the
total strain average is
BT=amAT+f]8“l+f2<8‘*z>2. (42)
From (38) and (41), we can get
g = (C° '=C™) g +e™
= (Cc“_cm "), D' ,(E+8Il+8l2)_(cc"__cm“), D2-g**!
+{(C ' =C ) DO +1) ™ (43)

Thus egn (7) can be rewritten as
8'2=R|'(§+£”)—R2’8"'+R7'8T2 (44)

in which R, and R, are given by (21a), and
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i

R.=(I-D")"""D* D" = f,(S"-[(C°'—C™ ):D*+I})..

From (38) we know that
g +et—g** = C" -o° -
Substituting (13), (44) and (45) into (11) yields
F  8+F.8" +F,-e**' +F;- " =0
in which F, and F, are given by (23a), and
Fs = f/iR;+ iR+ f:R,*R;, Ry =<(C™ '-D*),.
Equation (46) can be rearranged to give
F= —F '[F, e +F,-e**' +F,-e").

Substituting (47) into (44) yiclds

Bl: = Rl '[5“""‘ l'(F:'E“+F4'8**1+F5'5T2)]“R2°3“l+R7'8T2

=H, ¢""+H,-g**" +H, "
in which H, and H, are given by (25a), and
H,=R,—R, -F, '-F,.
From (37), we have

l:t-tl = /\’T‘(ﬁ+8'2)+(A"l‘-S+I)'C"‘ l'Cf.le

in which A and T are given by (26a). Substituting (6) into (47) and (48) yields

g=—F;"“(F,"S+F)-¢e** —F;'"Fs-¢g"
and
e =Hy 2" +(H,*S+H,) -e**'.
Substituting (50) and (51) into (49) yiclds

C**I = 1\'14'[""‘F1 I'(F:’S+F4)'e“l—F| 'F5'8T2+H4‘8T2
+(H, S+H ) 2**' |+ (A-T-S+0):C™ '-Cl-g"
=E, e**'+E, e"+E;-¢"

in which E; is given by (29a), and
E,=AT-[H,~F '“F;] E;=(A-T-S+D-C" '-C"

Rearrange (52) to give

(44a)

(45)

(46)

(46a)

(47)

(48)

(48a)

(49)

(50)

5bh

(52)

(52a)
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8"' = (I—Ez)- ! 'E6'8n+(l-Ez)'l M E7 'ETl
=Eg-eP+E;-¢" (53)

in which
Eg=(1-E)"'"‘Eq E;=(1-E;) '‘E.. (53a)

Substituting (53) into (50) and (51) yields

E=E(o'8n+E“'3TI and E|2=El2°8T2+E(3°6TI (54)
in which
Eo=—F{'-(F,S+F)-Ey~F{''F; E = —F{'*(F;"S+F.) E,
E|2=H4+(H2°S+H3)'Eg E|3=(H:°S+H3)'Eq. (55)

Substituting (6). (43), (53), (54) and (55) into (42} yields
ET=amAT+E|4'8T2+E|5'8Tl (56)
in which R and R, arc given by (33a), and

Eii=fiEs+ [2[Rs (E\g+E 2 +S Ey) - R Ey+Ry)
Eis = fiEg+ f2[Rs-(E; +E ; +S-Ey) — R EJ]

R’ =((C '=C™ ') D*+1),. (56a)

Thus the effective coeflicient tensor of thermal expansion «* is given as

RT

2* = = =t + Bt (@) +E i (2= at,). (57)

NUMERICAL EXAMPLES AND DISCUSSION

A comparison study with existing works and a parametric study were conducted based
on the formulation developed in the previous sections.

Example |

The first example is a comparison of elastic moduli for 4 composite with long con-
tinuous coated fibers based on the present work with those of Pagano and Tandon’s
composite cylinder assemblage model (1988). The materials (matrix, fiber and coating) are
all isotropic and their properties are listed as follows :

fiber: Nicalon
E(GPa) = 200, G(GPa) = 77, volume fraction = 0.6;
matrix : BMAS
E(GPa) = 106, G(GPa) = 43.

In addition, the Poisson ratio of coating material is 0.31, however, the coating Young's
modulus and the ratio of coating thickness to radius of coated fiber were selected as
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Table 1. Comparisons of the present model with Pagano and Tandon’s work (1988) on the effective
elastic moduli of a composite with long coated fibers

Coating
Coating thickness modulus E., E., e G
Fiber radius GPa GPa GPa GPa GPa

0 —_ 162.528 151.964 60.614 59.814
(162.530) 1152.840) (60.615) (60.357)

0.345 160.830 40.391 18.495 15.118
(160.833) (45.148) (18.361) (18.010)

0.01291 345 160.920 106.460 43.616 40.848
(160.922) (109.74D) (43.611) (42.811)

34.5 161411 147.090 58.696 57.684
(161.412) (148.031) (58.697) (58.263)

0.345 153.982 21.620 10.932 g.114
(153.986) (22.891) (10.149) (9.232)

0.06455 345 154.292 53.835 23.410 20.114
(154.296) (58.330) (23.057) 22.850)

345 156.798 130.090 52.019 50.361
(156.799) (131.901) { 52.043) (51.464)

0.345 144.994 15.377 8.032 5.766
(145.002) (14.624) (6.778) {5.826)

0.1291 345 145,557 34.792 15.665 12.871
(145.560) (37.123) (14.852) (14.500)

34.5 150.704 113.016 45.280 43.162

(150.704) (115.995) (45.307) (44.914)

Numbers in () are picked from Pagano and Tandon (1988).

parameters. The results are documented in Table 1. As follows, it is shown that even for a
modcrately thick coating, good consistency is still reached.

Example 2

The second example compares our prediction of thermoelastic properties of a com-
posite reinforced by long continuous coated fibers with the work by Benveniste et al. (1989).
The material systems 1, 3 and 4 are picked from Table | of the work by Benveniste et al.
(1989). They are now redefined as systems 1, 2 and 3. The results are documented in Table

Table 2. Comparisons of the present model with Benveniste er al.’s work
(1989) on the effective thermoclastic moduli of a composite with long
coated fibers

Materials Benveniste ef af, (1989) Present
1 1.255 1.255
E./E, 2 1.236 1.236
3 2.379 2.380
1 1.188 1.189
Al o 2 1.171 1.171
3 1.655 1.654
1 3.224x 10" 3225%10°°
12,(°C"") 2 10.09x 10 10.09x 10 ¢
3 7.638 x 10 °° 7.598 x 10°*
1 3.332x10°* 3.333x10°*
2,(°C™ 1) 2 907t x 10-° 9.039x10°*
3 5.998 x 10°* 5979 % t0-*

E, : Effcctive longitudinal Young's modulus.

ua: Effective longitudinal shear modulus.

ar: Effective transverse coefficient of thermal expansion.
a4 : Effective longitudinal coefficient of thermal expansion.
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2. Excellent consistency is reached, as expected, since both were based on Mori-Tanaka’s
method and the coatings of these three systems were all thin (the ratio of coating thickness
to fiber radius is 0.02056 for system | and 0.01329 for systems 2 and 3).

Example 3

In the above two examples, it is seen that the present work gives excellent agreement
with previous analytical work for continuous thin coated fiber. In this example we compare
our solution to recent work by Tong and Jasiuk (1990), where they considered the effect of
coating thickness of the effective coefficients of thermal expansion for a composite reinforced
with coated spherical particles. The result is shown in Fig. 1. It is seen that in this extreme
case our solution was also valid even when the layer of coating was thick (say, the volume
ratio of coating layer to matrix, {/m, is 0.2). In fact a further confirmation on the validity
of the present solution for the case of thick coating fibers has been shown by the authors
(1991) after a comparison with the work by Pagano and Tandon (1990) on multidirectional
continuous fibers.

Example 4
The fourth example is a parametric study for a short coated fiber composite. The
materials of matrix, fiber and coating are all isotropic. Denoting:

E,. E.. E. = Young's moduli of matrix, fiber and coating.

Ve Vi» ¥ = Poisson’s ratio of matrix, fiber and coating.

% & & = cocflicients of thermal expansion of matrix, fiber and coating.
So. f1. f2 = volumc fraction of matrix, fibcr and coating.

I, d = long and short axis of the ellipsoidal fiber.

The fixed material propertics arc
EJE, =5 v.=v=03, v,=04a/a,=5 [ =05

The results are presented in Figs 2-15. In Figs 2-8, the effective thermoelastic properties
of the composite are plotted against the ratio of coating volume fraction to fiber volume

14~ Solid line: Tong and Jasiuk (1990, Fig. 3)
Symbol: our solution Vm=0.2

1.2

%S|&° o8

0.8

a% CTE of composite

0.4 + a™: CTE of motvix

I: Layer volume fraction

m: Mutt}x volume fraction
|

0.2 1
0.0 02 0.4 0.8 0.8 1.0

Particle volume fraction, f

Fig. 1. Comparison of present model with Tong and Jasiuk’s work (1990) on dimensionless par-
ameter of the effective thermal coefficient, o /a,,, of a composite with spherical coated fibers.
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fraction. f./ f. with the aspect ratio of fiber. /:d. betng chosen as 5. However, in Figs 9~153,
the effective thermoelastic properties of the composite are plotted against the aspect ratio
of the fiber, ['d. with f.'f, = 0.04. In all these figures. the ratio of Young's coating modulus
to Young's matrix modulus, E, £,. is selected as the parameter. Besides. in Figs 6. 7, 13
and 14, the ratio of x/x, 15 4 combined parameter together with E, E,,.

As follows from Figs 2-6. all the dimensionless moduli (£, E,,. E. E,. G,/E, and
G-/ Ey) except v . increase monotonely as the parameter £, 'E, increases. It is also noted
that except v, all these moduli drop drastically near the origin as expected since the value
of zero of E./E,, represents a debonding zone. Further, all these moduli including v, are
less sensitive to large £,/ E, than to small E, £,,. [t also tollows from Figs 7 and § that when
the parameter x,, X, is small, %, %, is less sensitive to the parameter £ E, than is x5 %,

As for the behavior of the thermoelastic moduli versus the fiber aspect ratio /;d. shown
in Figs 9-13. this has been known in other works and is not discussed further here except

35
/d=5
__
e /
30 /+/
/*‘
.
‘._‘___‘:‘_"_._.. ..... Bt e < e e s e = -
25Fy e o o
uJE \ ..... [« Oennn. .
= \ +: EJE =15 y
w * .
2.0t ~ . Ec/Em=]‘S
N~ o:EJE =0.15
'~ x:E/E_=0.015
1 5*‘ \"\ J ™
~
~_
Moy
T~
1.0 ! 1 I I ] |
0 002 004 006 008 010 012
frts

Fig. 2. Relationship of dimensionkess fongitudinal Youny's modulus versus ratio of couting volume
fraction to fiber volume fraction.

EZZIEm

— —x

) ) - ] it —
0 002 004 006 008 0.10 0.12

t/h

Fig. 3. Relationship of dimensiontess transverse Youny's modulus versus ratio of coating volume
raction to tiber volume fraction.

0.4
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that it is worthwhile to notice the interesting behavior of Poisson's ratio v, near the origin
(very short fiber), as shown in Fig. 13.

CONCLUDING REMARKS

In this work, the formulae for effective thermoelastic properties of a thin coated short
fiber composite were derived under the assumption of thin coating and constant variation
of stresses and strains through the thickness of the coating. In the regime of thin coating.
the numerical comparisons with existing works showed excellent consistency. As for the
thick coating. a comparison of our special case with currently available work showed
another satisfaction. A parametric study was also conducted for the purpose of illustration.
The present work should be extendable to many kinds of fibers and randomly oriented
systems. They are currently under investigation and will appear soon.
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APPENDIX A: VOLUME INTEGRATION OVER A THIN COATING LAYER

Consider an cllipsoid with circular cross-section and whose long axis is / and short axis is 4. The equation of

surface of such ellipsoidal inclusion is
AANNAACENEAY
(;)*(7{)*(7) -

in which x, is the longitudinal axis. Introducing the dimensionless quantities x, = ©/d and ¢ = l/d, the above
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oY P
(T) +xi+xy; =1 {Al)

equation can be rewritten as

Let

flx) = (-’)},vgﬂ:—l, (A2)

/

Thus, the unit normal is

vf

n=(n..n:.n,)=l—'ﬁv {A®)

Introducing polar coordinates in the x,-x, section:

T
=[x‘§+,\*3}'2=[!-—('};’)} : {I:(an“%‘. {Ad)

Then (Al) can be rewritten as

Xy ¥ )
(}») +ri=1 (A5}

and

. AN PR
o i -(l ') cost) [—- -‘)] sint)
r? i r )

B (R A (RS € e

Volume integration over thin coating layer

Under the assumption of thin coating and hence the constant variation of stresses and strains through the
thickness of the coating, the volume average of u stress or strain function, being a function of surfuce direction,
Le. F(n), over the domain of coating, £, -0, can be approximated by surface integration over the fiber surface
according to the following formula

{F):=f de/j di"--j J' F(n)d.wd(?;/JA J‘ dsrdfi {AT)
(2, -0, 0y -0, -t Jo FJorde

in which ds® = dx{ +dr? 1t can be casily shown that

dr ¥ X} (A%
dv,) -t 9

So,

- dr 02 o (_l_:'__[”)“_ti 12
d"‘[”(&?’,)] d.\,.-[ A ] dx,. (AY)
Now (A7) can be written as

t 47112 b3 T RV [ In

(Fy; = jj' F(n)[ ”"*’] [1—(L)] dx.do” J dsrdo
o lx { -1 Jo
47102 ' s
f j F()[ ')“*’] dx,d@fj.[ j‘ dsrdo. (A10)
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APPENDIX B: A SAMPLE CALCULATION FOR TYPICAL FOURTH ORDER TENSORS

In this work, a lot of fourth order tensor algebra has been involved. Some typical ones requiring an average
over the domain of coating layer, such as D in eqn (21a) whose tensorial “kernel™ is a function of surface
direction cosine of the coating layer, are rather complicated. The algebra can however be simplified if a shorthand
notation is used. Thus to facilitate the interested readers, a typical sample calculation for these tensors is shown
below in detail. For simplification, the coating material is assumed to be isotropic. which in fact is rather realistic.

We start from the most general symmetric fourth-rank tensor C(C,,, If the symmetries C,4y = C,u are
allowed, then this general tensor is given according to the following expression [see, for example, Walpole (1978)] :
Cos = 2(0, —n,n) (04 —meny) + B (3, — o )n, + B2 (04, — nonnn, + yrnnen + (04 —nin, (6, — nyny)

+ (04 — (0, —nn)— (5, —nn )0y —mn) ] +n{(S, —nnm)nm + (6, —nn)nn, + (5, —nn)nn,
+ (0 —nn)nn]
= (z—fi=B:+y—dn+nnnan+ (2 =500+ (040, +3,0,) + (B + = mmdy + (B, + § —x)nn b,

+(n=3)dunn +d,nn +d,mn +d,.nn/]. (Bl)

The above equation can be written in the shorthand notation

C=Quap.f:.7.2{. 2m). (B2)
For a transversely isotropic material,
1= (C:+Ci)/2, B,=Cy
B.=Ci y=Cu
§=Cu=(Ca=Cpy)i2, n=Cs5=Co (B3)

where the Cs arc the reduced notation for C. Consider now the two fourth-rank tensors given as

Ca=Quf.f:.7.28.2n) C =Qa.p1.020n7.28.2n). (B4)
Then it can be shown that
C+C = Qa2 Jy+F Bt foy +7. 28428, 20+ 20) (B5)
and
C-C = (4o’ + 20,12 221 + 7" 20 By + Vay. vy’ + 200 1. 458 4nn'). (B6)

Now the fourth-rank unit tensor I can be expressed as
l.,u = i(‘sdd/l""jll‘s,l) = (1,0,0. i1, 0. (B7)

Let C-C’ = 1. Then it can easily be shown that

c-C=C-C=1 (B8)
and
, y -,
a = . Ph= =
ey Ny R oy )
o = “__“ = _ﬂl
At oy I Ll o T )
, ! .
= i Uil (B9)
Now let
Ky = Ciyngng = [Ady 8, + p (5,0, + 6,8, )Inem, (B10)
or
o A
K kil (B11)

TR aler2™

Define P™ according to

Py = YKE  mm + KD oy + K3 my + K 'nymy). (B12)
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For simplicity. let us consider 1sotropic coated matenial only. Then we have the following symbolic expressions :

1 ° i 1
| O.G.G.ff»w.o.l) P =10,0.0. - Y R
Ac+2p 2y, VIS /T T

k4

C¥ o= (A + 200 Acs A A+ 200 20 20)

CoPr = (o % 0.1.0, 1) crepm = (o,/_—"“ﬁ—ﬁo. 1.0.1)

PR + 24

352
24

Co-peeCe = ( Aewdes i+ 20,0, 2;&)

Ao+

ik AlAe + 24t

.i.,,,.i.m+2u.,..0.2um>‘ (B1Y)

P C = T
c-p (/.c+2u,_. A+ 2p,

Thus
D' = C—C P C 4 PO

(4;;5 +6pu.h, QAL Al d + 21t}

: ; . - A Ay + 2ty 2hen 24ty
Ao+ 2 Aot 20, A+ 20t m ¥ =Hme oo S

= Qdydidyyod W 2d0 2 ) (B1d)
D =Cp-CT

m sl 3 3
LT FIFS Pe Ao+ 20,0, ..;1,,,)

Qhihm  AdAn+2u0,)
VST
= 2y dyedyn d g 2d 2 ). (B15)
Duc to the symmetry of €™, eqn (8) can be casily shown as

S =8 - e pe

(S S S S 8 S =8 28,0 -—(n_/_“»“”“m,u, 1,0, 1)

= (287,59, 59, 55,259,280 (B16)
where
oo S” f,S?‘ §0 o &, — ,,,,f;',"' o
! 2 ! o i ;'III + 2”!“
5% = 8. Si=8,~1
S5.,:-5,
B s T T Ve (BI7)
We now have
) 24, +2u) — A, - PRETR 1 1
C = LT E VU R SR D (B18)
M2l + 3 A0 " 20207+ A T 20200 + 3iA) T 2Qul + 3pch) T 2" 2u

P b+ 2pt1n) ~ = o N B (B19)
T2+ Y hn) T 200 3 A U e+ 3ptnda) T 20205+ 3 A 2ite” 2]
Denoting
C ™ = CACLACLAC, ACL2AC, 2AC,). (B20y

Thus the following expressions can be readily obtained

S5 (Co =C 'y = Q028TAC, + S1AC ),
28VAC, + SIAC L 2S5VAC, + SIAC,. 257AC, + SIAC,,
ASTACASIAC,) = Qbbb b 2hy 2b,)  (B2D)

S C I =CL DY = Qb b )20 d - had W20 dy A b hd s had 3B d dbd ) (B2

SP(C7 = Cot) D = (202 sy +bad ). 2b dys +body 2bydyy +bads 2ydy s +Bad s 30 dys dbydyg). (B23)
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Now [et

F=S8"-(C =C")-D' = (2d;,.d;0dyy, dyyn 2y5 2dy)
or

Fou=(dy—do—d,+dy—3dy,+dy)nnnn
+{dsy = d3)0,00 +d (340, +0,04)
+d+d—di)o,mm +(dyy +dys—dy)ounn,
+(dye —d MO +S,mn, +0,n0,+8,n0,).

Now since

D' = f12({F>:

the component D,y can then be computed, according to Appendix A, as

D::Al = fx KFur:

(1- I)r,+l . Y2 / . o .
=fi: j J‘ Fln)- l: I 7 ‘;’I—-‘] [l—<‘[)] d.\‘|d0/ J"J; dsrdt

22719

(B24)

(B25)

(B26)

(B27)



